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Abstract This paper attempts to identify the high-risk

areas for potential runoff of pyrethroid pesticides in the San

Joaquin River Watershed. Pyrethroid pesticides have been

detected in water and fluvial sediments in this watershed,

creating concerns about potential negative impacts on

water quality. However, little documentation exists

regarding the distributions or the extent of the adverse

effects caused by the use of pyrethroids. This study

developed a geographic information systems (GIS) model

to identify areas with high potential for pyrethroid runoff

during the rainy season. The model was then validated

using field-monitoring data. Nine factors were identified

for the runoff risk assessment: amount of active ingredient

used, soil erodibility factor, hydrologic group, surface layer

depth, seasonal rainfall, seasonal number of rainy days,

seasonal number of storm events, stream density, and land

cover. The results indicated that high pyrethroid runoff

risks were associated with basins such as the Stanislaus

River Sub-basin, Newman Gustine Sub-basin and South

Merced Sub-basin. This study demonstrated that the GIS

model is capable of predicting high-risk areas of pyrethroid

runoff at sub-basin scale. The model can be used to pri-

oritize sites for water quality monitoring and guide

implementations of best management practices.

Keywords Pyrethroids � Dormant runoff � GIS modeling �
Water quality

Introduction

Since the 1970s, there have been increasing concerns about

the effects of agricultural pesticide use on water quality.

Regulator laws such as the Clean Water Act and the Food

Quality Protection Act (FQPA) have emerged in response to

this issue. As a result, many growers have been affected

through regulations restricting or eliminating popular orga-

nophosphate pesticides. New products have emerged in the

form of synthetic pyrethroids, a group of insecticides derived

from chrysanthemum flowers, which are high in efficacy and

low in cost. As a result, the use of pyrethroid pesticide has

been increased in California by about 80% from 1992 to 2004

(California’s Pesticide Use Reporting database; http://www.

cdpr.ca.gov). A wide variety of agricultural commodities

including tree crops, horticultural crops, beans, grain corns,

and cereals depend on pyrethroids to control insect pests

throughout the season. As of 2005, there were 27 pyrethroid

active ingredients registered for use in California (Califor-

nia’s Pesticide Use Reporting database; http://www.

cdpr.ca.gov). The most commonly used pyrethroid was

permethrin [(3-phenoxyphenyl)methyl3-(2,2-dichloroethe-

nyl)-2,2-dimethyl-cyclopropane-1-carboxylate], followed

by esfenvalerate ([(R)-cyano-(3-phenoxyphenyl)methyl]

(2R)-2-(4-chlorophenyl)-3-methyl-butanoate), bifenthrin

((2-methyl-3-phenyl-phenyl)methyl 3-[(Z)-2-chloro-3,3,3-

trifluoro-prop-1-enyl]-2,2-dimethyl-cyclopropane-1-carbox-
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ylate) and lambda-cyhalothrin [(RS)-alpha-cyano-3-phen-

oxybenzyl 3-(2-chloro-3,3,3-trifluoropropenyl)-2,2,-dim-

ethylcyclopropanecarboxylate].

As a result of high use during the rainy season, pyre-

throid chemicals have recently been detected in water and

sediments sampled from Central Valley water bodies. The

detected levels were high enough to be toxic to aquatic

invertebrates and fish species, thus posing new water

quality concerns for California (Weston et al. 2004; Zalom

2005). A review paper by Laskowski (2002) indicated that

the partition coefficient between water and soil media

(Koc) of pyrethroid chemicals range from 1 · 105 to about

7 · 105. The physico-chemical properties of pyrethroids

reflect a strong tendency to adsorb to organic carbons, and

therefore, to potentially move off-site attached to sediment

(Bacey et al. 2005).

Recently, the California Department of Pesticide Reg-

ulation plans to re-evaluate 608 pyrethroid insecticide

products for environmental impacts (EPA Website,

http://www.epa.gov/oppsrrd1/registration_review/explanation.

htm). There is a strong need to understand their potential

impacts on water quality. However, little has been docu-

mented regarding the distribution or extent of adverse

effects caused by pyrethroids. In order to facilitate the re-

evaluation of pyrethroid pesticides and gain a greater

understanding of geographic ‘‘hotspots’’ for high-risk, the

study developed a geographic information systems (GIS)

model. The purpose of this model was to investigate the

spatial variations of the off-site movement of pyrethroid

pesticides from agricultural lands in the San Joaquin River

Watershed. The model was designed to determine the

factors influencing off-site movement of pyrethroid

chemicals and the geographic locations where off-site

movement was most likely to occur.

Pyrethroid runoff could be generated by either rainfall or

irrigation. While winter rainfalls have been identified as a

possible route of pyrethroid transport (Bacey et al. 2005),

irrigation runoff is another possible reason accounting for

the increasing detection of pyrethroids in water and sedi-

ments. The first step of the study focuses on the

investigation on pyrethroid runoff generated by winter

rainfalls. The second step, which is still ongoing, focuses

on pyrethroid runoff generated by irrigation events. To

assess the runoff potential generated by irrigation water,

additional factors such as soil moisture and irrigation

efficiency need to be taken into account. These factors are

very important to water balance and thus will greatly affect

the amount of pyrethroid runoff. Moreover, the spatial

distributions of irrigation canals, which provide water

inputs to fields in the watershed, are very different from

those of the natural streams. Due to the above reasons, this

study takes two steps to identify the hotspot areas. This

paper reports the findings on the first part of the project,

which identified the hotspot areas of pyrethroid runoff due

to rainfall events.

In general, there are three main approaches that have

been employed to assess surface water vulnerability to

agrochemical contamination (Zhang et al. 1996): (1)

indexing and rating methods which provide relative

scores or ranks according to specific characteristics that

are considered as controlling vulnerability; (2) modeling

approaches using physically based models to approxi-

mate contaminant transport; and (3) statistical methods

that correlate contaminant occurrence with properties of

the area. Examples of the index methods include the

Phosphorus index (P-index) (Lemunyon and Gilbert

1993) and relative runoff potential index (Hornsby et al.

1993). P-index used transport and source factors to

identify areas vulnerable to P export. A weighting factor

was assigned to each of the selected factors such as soil

erosion rates, runoff, and available P soil test levels to

assess the degree of vulnerability of P movement from

the site. The weights were given based on professional

judgment. At the end, rating ranks of low, medium, high,

or very high were given to each assessment unit. The

relative runoff potential index used factors such as

chemical properties (Koc), aquatic toxicity, soil hydro-

logic group, and slope to identify relative runoff

potential of various pesticides. It also assigns ratings of

high, medium and low to each pesticide being evaluated.

The concept of indexing and ranking for vulnerability

assessment usually relies on professional judgment and

has been verified to be successful to identify vulnerable

areas at both field and regional scale (Stevens et al.

1993; Sharpley et al. 1995; Birr and Mulla 2001).

Examples of modeling approach include the VULPEST

model (Villeneuve et al. 1990) and the GLEAMS model

(Knisel 1993). These models have been used to predict

the environmental fate and behavior of pesticides; how-

ever, their extensive data requirements often preclude

spatial extrapolation to broad regional or watershed

scales. Statistical models using regression analysis have

been used to relate mean or total transport of contami-

nants in surface water to explanatory variables (Battaglin

and Goolsby 1997; Chen et al. 2002; Gilroy et al. 1990).

However, this approach heavily relies upon the amount

of existing monitoring data. This paper was devoted to

develop a GIS model to assess the site vulnerability

specifically to pyrethroid pesticide contamination to

surface water. The approach used here is a combination

of the index approach and the modeling approach. First,

different factors were chosen to capture the spatial

variations of pyrethroid runoff potential. Secondly, the

weightings of the variables were assigned based on

professional judgment. Finally, the model was validated

using monitoring data.
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Materials and methods

Watershed

The San Joaquin River Watershed, which lies in the Cen-

tral Valley of California, is comprised of San Joaquin,

Stanislaus, Merced and Fresno counties. As illustrated in

Fig. 1, there are four major rivers running through the

watershed: the San Joaquin, Stanislaus, Tuolumne and

Merced Rivers. There are over 200 crops grown on the,

approximately, 19,023 km2 of agricultural land in the

watershed with dominant crops of almond, cotton and

citrus. In fact, in 2003, approximately 60% of the total

pyrethroid amount used in the state was applied to the

crops in the San Joaquin Valley, half of which was applied

during the winter months (California’s Pesticide Use

Reporting Database).

Data sources

The study acquired data from various state and federal

agencies. Precipitation data from year 1975 to 2005 was

obtained for stations of the Western Regional Climate

Center, and from 1990 to 2003 for stations of the California

Irrigation Management Information System (CIMIS).

Statewide pesticide use data from year 2001 to 2004 was

obtained from California’s Pesticide Use Reporting Data-

base. Soil data was obtained from the State Soil

Geographic database from NRCS. Data about stream den-

sity was obtained from the 1:24000 National Hydrograph

Dataset (NHD) developed by the US Geological Survey for

all the hydrologic units within the watershed. Pyrethroid

concentration data was obtained from the published study

by Weston et al. (2004).

Factor identification and quantification

This study explored a set of potential factors influencing

pyrethroid runoff through intensive review of literature and

existing models such as the Modified Soil Loss Equation

(MUSLE) (McCool et al. 2004), Groundwater Loading

Effects of Agricultural Management Systems (GLEAMS)

(Knisel 1993), Hydrologic Simulation Program Fortran

(HSPF) (Barnwell 1980), SWAT (Neitsch et al. 2002) and

Environmental Policy Integrated Climate (EPIC) (Sharply

and Williams 1990). Most of the models use the MUSLE to

assess soil erosion and the USDA curve number method to

quantify surface runoff. However, the curve number

method does not take into account the rainfall intensity,

which is very important for estimating rain induced runoff

(Oros and Werner 2005). Based on the review of the

current models and parameters, the project simplified the

Fig. 1 Map of the San Joaquin

River Watershed
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modeling processes by incorporating the most important

parameters from the MUSLE and USDA curve number

methods into one model. As a result, the factors presented

in Table 1 were included in this study.

Precipitation effects

The relationship between rainfall and surface runoff is one

of the fundamental concepts in hydrology (Viessman and

Lewis 1996). For calculating rainfall induced runoff, the

importance of rainfall amount is self-explanatory. In

addition, rainfall intensity affects the amount of energy

arrive on land surface from precipitation. High rainfall

intensity brings large amount of energy to land surface,

forcing chemicals to move offsite. Rainfall intensity has

been suggested to have linear correlation with runoff

(Probst et al. 2005; Arnaez et al. 2007).

To quantify the effects of precipitation, the total long

term monthly average rainfall (R), number of rainy days

(RD) and number of severe storm events (SE) during the

rainy season were calculated. The rainy season was defined

as rainfall occurring from November 1 of the former year

to March 31 the current year according to average monthly

rainfall (Table 2). A severe storm was considered as an

extreme rainfall event exceeding 25.4 mm in one day,

which qualified approximate 0.2% of the days within a year

as having storm events.

Use and land cover index (UV)

Use of pyrethroid chemicals is the source of runoff risk.

The amount and the geographical distribution of the pes-

ticide application affect runoff at the very beginning. In

agricultural land, different types of crops will have dif-

ferent effects on runoff. Crop C-factors are generalized

values for specific crops that determine the effectiveness of

vegetation type and crop management systems in pre-

venting soil loss (McCool et al. 2004). This study

employed the C-factor values as defined in the MUSLE

model (Electronic supplementary material Table S1). Dif-

ferent crops were assigned C-factor values to define the

potential ease of pesticide runoff. High C-factor values

indicate strong tendencies for pesticides to move offsite

from agricultural fields.

Table 1 Factors used in the

GIS model
Factor Definition Quantification

P Pesticide use Summation of pounds of pyrethroid active ingredient,

2001–2004

R Rainfall Summation of monthly rainfall: November 1–March 31

RD Rainy days Summation of number of rainy days: November 1–March 31

SE Storm events Summation of number of storm events: November 1–March 31

Kf Soil Kf factor Measure of erodibility and runoff potential of soil, taking into

account organic matter and soil texture

H Soil hydrologic group Classification used by the US National Resource Conservation

Service (NRCS) reflecting soil permeability; A, B, C and D

reflect the ascending order of runoff potential (A = 0, B = 1,

C = 2, D = 3)

D Soil surface layer depth Inverse of the thickness of the surface layer of the soil; Affects

the permeability and infiltration process

C Crop C-factor Measurement of the effectiveness of the surface vegetation

cover; This study employed the C-factor values as defined

in the Universal Soil Loss Equation model (see Electronic

Supplementary information Table S1)

SD Stream density Total stream length divided by area of each sub-watershed

UV Use and land cover index P · C

SR Soil runoff potential index D · H · Kf

Table 2 Long-term average of monthly rainfall, number of rainy

days and the number of storm events data include years from 1975 to

2005 for the stations from the Western Regional Climate Center and

include years from 1990 to 2003 for stations from the CIMIS database

Month Precipitation

(mm)

Number of

rainy days

Number of

storm events

November 74.68 6.21 0.85

December 97.54 7.36 1.15

January 116.84 8.59 1.41

February 122.17 8.54 1.52

March 102.62 8.60 1.13
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By combining pesticide use and land cover, UV values

were calculated using the following equation:

UV ¼ P � C ð1Þ

Pesticide use (P) factor was quantified by summing pounds

of active ingredient for all the pyrethroids applied from

2001 to 2004. For each one square mile section, total

pounds of active ingredients used on all crops were sum-

med. A GIS layer of UV values was created at section

scale, which is 1 square mile of land defined by the public

land survey system (PLSS). If there was more than one

type of crop grown within a section, the UV value was

calculated as an area weighted average of UV values for all

the crops within the section.

Soil runoff potential index (SR)

Soil runoff potential has been used by various equations

and models, such as the P-index and the SWAT model, to

calculate soil runoff potential (Renard et al. 1991; Le-

munyon and Gilbert 1993; Hornsby et al. 1993; Manguerra

and Engel 1998).

SR was defined as:

SR ¼ D� H� Kf ð2Þ

Soil survey data was converted from map unit scale to

sectional scale to conform to other model parameters. The

depth of the surface layer (D) affects the permeability and

infiltration process. Soils with a thin surface layer tend to

have high runoff potential. Soil Hydrologic group (H) is a

classification used by the US National Resource Conser-

vation Service (NRCS) reflecting soil permeability. Groups

A, B, C and D reflect the ascending order of runoff

potential (A = 0, B = 1, C = 2, D = 3) (USDA NRCS

2002). Soil factor (Kf) is an adjusted K factor to include

organic matter contents. K factor indicates the soil texture,

erodibility, and potential for runoff from soil. Soils high in

clay have low K values because they are resistant to

detachment. Coarse textured soils, such as silt loam soils,

are moderately susceptible to detachment, producing

moderate runoff. Soils having high silt content are the most

erodible among all soils. They detach easily, tend to crust,

and produce high rates of runoff.

Stream density (SD)

Areas with high stream density tend to have quicker runoff

response than those of low stream density (Domagalski

et al. 1997; Bae and Ha 2005). Stream density was defined

as total stream length divided by area of each sub-water-

shed, both of which were calculated using the NHD.

Stream density values were calculated for each sub-

watershed and were then converted to sectional scale.

SD ¼
P

Streamlength

area
ð3Þ

Standardization

Values of all the factors were standardized using the

equation below to adjust the ranges of all the factors to

values between 0 and 100.

xiðnewÞ ¼
xi � xmin

xmax

� 100 ð4Þ

Cartographic modeling

A GIS database was constructed to store spatial and tem-

poral information. Data from many different sources were

analyzed using the SAS statistical packages and converted

into a uniform format for the GIS system. GIS layers

containing different factors were overlaid upon one another

(Fig. 2). A model was developed to calculate risk scores by

assigning weights to different factors as shown below:

Y ¼ b1 � UVþ b2 � Rþ b3 � RDþ b4 � SEþ b5

� SRþ b6 � SD
ð5Þ

Where regression coefficients b1 + b2 + b3 + b4 + b5 +

b6 = 1. Y is the risk score.

High-risk areas were determined based on the integra-

tion of different factor values. Areas with high rainfall,

high soil loss potential, high pesticide use value and high

stream densities were considered to be the most prone to

pyrethroid movement through soil erosion, and therefore

the highest risk for water quality contamination. In

Fig. 2 GIS overlay of different factors to calculate potential risk

index
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contrast, areas with low values of the above factors were

considered to be low risk areas.

The model assumes a linear correlation between run-

off risk and each factor. Studies have shown that

pesticide use and rainfall are major environmental vari-

ables for pesticide transport into surface water at a

watershed scale (Guo et al. 2004; Schulz 2004). There-

fore, rainfall and pesticide use were given heavier

weights than the other factors. Areas with no rainfall or

pesticide use were treated as having no runoff risk. In

the study, it was found that a significant data gap exists

in pyrethroid monitoring information. Little work has

been done to monitor pyrethroid pesticides in the surface

waters within the San Joaquin river watershed; therefore,

the estimate of the model parameters relied on the

mechanistic understandings of the runoff process as

influenced by each factor.

Based on the assumption that the selected factors could

explain the total variation of the potential risk, the coef-

ficients of the variables add up to one. Each of the

coefficients was assigned according to the relevant

importance of the associated variable. The coefficient of

determination (R2) of a regression model developed by

Guo et al. (2004) was 0.674, which indicated that pre-

cipitation and pesticide use alone explained 67.4% of the

variation of diazinon load in surface water. Because

pyrethroids are hydrophobic and more easily attached to

soil than diazinon, the sum of b1 + b2 + b3 + b4 was less

than 0.674. As a result, the values of 0.35 and 0.2 were

given to b1 (use and land cover index) and b2 + b3 + b4

(precipitation effects) respectively. Due to the strong

influence of soil runoff potential for pyrethroid runoff, a

coefficient of 0.3 was designated for b5. The coefficient of

stream density was determined to account for the

remaining portion of the variance and given a value of

0.15 (b6).

Risk classification

Risk scores calculated from the model were grouped into

four classes according to the distribution of values and the

standard deviation (STD): low, moderate, high and very

high (Fig. 3). The values ranging from 0 to the mean –

0.5STD were assigned to low risk; values ranging from the

mean – 0.5STD to the mean + 0.5STD were assigned to

moderate risk; values ranging from mean + 0.5STD to the

mean + 1.5STD were referred to as high-risk; and values

ranging from mean + 1.5STD to 100 were referred to as

very high-risk. Using this ranking method, hotspots of

pyrethroid runoff were identified. The STD was defined

calculated using the equation below:

STD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn

i¼1

Yi

s

ð6Þ

where yi is the standardized risk score calculated from

Eq. 5.

Model validation

To validate the modeling results, the study used monitoring

data from a published work by Weston et al. (2004).

Sediment samples were taken from seven monitoring sites

located in the San Joaquin River watershed. The watershed

was delineated into sub-basins that contribute flows to

the water quality monitoring sites. The watershed delin-

eation was conducted through the BASINS (USEPA

http://www.epa.gov/waterscience/basins/) auto delineation

procedure using the Digital Elevation Model data and

stream network. Runoff risk scores were predicted for each

of the sub-watersheds using the developed model in the

study. To evaluate the strength of the model’s prediction

capability, the study then compared the model’s predicted

risk score for each sub-basin to the detected pyrethroid

concentration measured at each sub-basin outlet by Weston

et al. (2004). For two reasons, the mean concentration of

permethrin in sediment measured was used as a represen-

tation of the actual pyrethroid concentration in sediment.

First, permethrin accounts for a majority of the uses among

all the pyrethroid compounds. In 1993, among the six

pyrethroid compounds that were used, permethrin com-

prised 60% of the total pyrethroid use. In 2002, permethrin

accounted for 45% of the total use among 10 of the pyre-

throid compounds (Amweg et al. 2005). Second, most of

the other pyrethroid compounds were under detection level

during their sampling study.

Fig. 3 Classification of overall risk
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Results and discussion

Soil

Within the watershed, approximately 50% of the soil was

classified as hydrological group D, which has the lowest

permeability among the four groups. About 25% percent

of the soil was classified in hydrological group A or B,

which have relatively low runoff, and high permeability.

Kf factors of the soils ranged from 0 to 0.43, with over

75% of the soils having a Kf greater than 0.3. This indi-

cated that most of the soils were generally high in

erodibility. The depth of the first layers of the soils ranged

from 0 to 76.2 cm with over 90% of the soils having a

surface layer shallower than 25.4 cm. Overall, soils in the

west side of the watershed were more prone to runoff

compared to soils in the east side of the watershed. This

pattern results in a quicker runoff response of sub-water-

sheds on the west bank than those on the east bank

(Domagalski et al. 1997). Hotspots with high soil runoff

potential were mainly located on the west side of the

watershed, such as the areas to the southeast of Gustine,

northeast of Los Banos and the area surrounding the South

Dos Palos. The area between the upper stream of the

Stanislaus River and the upper stream of the Tuolumne

River was the only hotspot located on the east side of the

watershed (Fig. 4).

Pesticide use and land cover

Sections with high UV values were not clustered. Most of

the high use sections were far away from the river with the

exception of the sections around the Stanislaus River

(Fig. 4). Those sections with high UV values contained

crops such as sunflowers, apples, strawberries, almonds,

oranges and corn. The high UV values were either due to

relatively high C-factors associated with the crops, such as

strawberries and sunflowers, or because of the high amount

of pyrethroid pesticides used for almond and apple crops.

However, the crop C-factor did not take into account of the

possibility that best management practices (BMPs), such as

cover crop, were being employed by growers, which could

greatly reduce the off-site movement of pyrethroid pesti-

cides. If BMPs were used, the C-factor should be reduced

to lower values for those fields.

When evaluating pesticide use and land cover in regards

to soil runoff potential, the study found that most of the

sections with high UV values were associated with soils of

low to moderate runoff potential (Fig. 4). There was no

significant pyrethroid use in the hotspot areas with high soil

runoff potential. In these areas, most of the sections had

low UV values, signifying little actual pesticide runoff

from these areas. Hotspots that ranked high on both UV

value and soil runoff potential were located near the

Stanislaus River and the city of Newman Gustine (Fig. 4).

Fig. 4 Risk rank by pesticide

use, land cover and soil

runoff potential
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Precipitation

The average monthly precipitation was highest in February,

with an average of 122.17 mm of rain. February also had

the most storm events among all the rainy season months.

November had the lowest rainfall and the least amount of

rainy days and storm events with an average of 74.68 mm

of rain (Table 2). Spatially, the areas with the highest

rainfall and the highest number of rainy days were the

Modesto area and middle-eastern part of the valley

(Fig. 5). However, the middle-eastern part of the valley had

fewer storms than the Modesto or Los Banos areas during

the rainy season (see Electronic supplementary material

Figs. S1, S2). Since rain generates runoff, the spatial dis-

tribution of precipitation was considered as an important

indicator for runoff potential. Areas with close to zero

rainfall were considered as having no runoff potential.

Stream density

The watershed was divided into 13 sub-watersheds as

defined by the California State Water Resource Control

Board. Among these sub-watersheds, the Vernalis North

sub-watershed had the highest stream density, followed by

the Stanislaus River and Tuolumne sub-watersheds. All

other sub-watersheds were relatively low in stream density

measures (Fig. 6). The Stanislaus River sub-watershed also

had high UV value sections, which were located close to

streams, indicating the high runoff potential for areas

within this sub-watershed.

Overall runoff risk

According to the mechanisms of runoff generation and the

specific properties of pyrethroid chemicals, the study

developed a simple linear model to calculate risk index and

then standardized the risk values for comparison among

different areas. The risk model is shown as follows:

yi ¼ 0:35� UVþ 0:1� Rþ 0:05� RDþ 0:05� SE

þ 0:3� SRþ 0:15� SD ð7Þ

Since the value of each variable was based on each section,

the risk score Y was calculated first for each section within

the watershed. The overall Y value of a delineated hydro-

basin was then calculated using Eq. 7, where n is the

number of sections within a hydro-basin and yi is the Y

value of the ith section in the basin. The values of n were

from 11 to 1,569 for the 13 sub-watersheds. Risk score Y

was later standardized so that all of the risk values ranged

between 0 and 100.

Y ¼
Xn

i¼1

yi ð8Þ

The final risk map showed that the areas with high

overall runoff potential were associated with the Stanislaus

Fig. 5 Risk rank by rainfall
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River Sub-basin, Newman Gustine Sub-basin, South

Merced Sub-basin, South Madera Sub-basin, Dos Palos

Sub-basins and the Chowchilla Sub-basin (Fig. 7). The

Stanislaus river sub-basin had the highest overall runoff

risk among all the sub-basins. This high-risk score can be

attributed to the sub-basin ranking high to very high in all

of the six variables. In addition, the high UV value sections

were close to rivers. The second highest risk sub-basin was

the Newman Gustine sub-basin. Factors that contributed to

this high-risk rating were over seven high UV value

sections, a number of high soil runoff potential areas and

high to very high rainfall in the region. The Madera sub-

basin was ranked high in overall runoff risk mainly because

of high pesticide use and moderate rainfall. The South

Merced sub-basin had high rainfall and many rainy days,

which resulted in high overall runoff risk. Dos Palos sub-

basins were ranked high in overall runoff risk due to high

pesticide use and many storm events. Chowchilla sub-basin

had relatively lower risk scores, although still high,

because it was ranked high in UV values but moderate to

low in other variables.

The hotspot areas identified in this study have high

potential of pyrethroid pesticide off-site movement during

the rainy season. Therefore, water quality monitoring sites

should be located at the outlets of these sub-watersheds to

quantify pyrethroid concentration in water and sediments.

BMPs such as vegetated ditches, cover crops and con-

structed wetlands should be implemented in these areas to

reduce the off-site movement of pyrethroid pesticides.

These strategies are necessary for preventing pyrethroid

pesticides from impacting water quality in the San Joaquin

River watershed.

Surprisingly, the Del Puerto Creek and Orestimba

Creek areas on the western bank received relatively low

ranks for overall runoff potential. Historical studies

(Domagalski et al. 1997) indicated that these areas are

more prone to runoff due to high pesticide use, heavy

textured soils and steeper slopes than that of the east side

of the San Joaquin River. Obviously, this was not found

to be the case for pyrethroids. This study revealed that

although there were a few high use sections located in the

Del Puerto Creek and Orestimba Creek area, they were

not located on soils with high runoff potential, which

resulted in their relatively low scores in overall runoff

potential. Given that the hotspot areas identified in this

study had higher risk scores than the Del Puerto Creek

and Orestimba Creek watershed area, the increase detec-

tion of pyrethroid pesticides in the Del Puerto Creek and

Orestimba Creek indicated that there might be even

higher detection rates for pyrethroid pesticides in the

hotspot areas. Another possible explanation could be that

the detected pyrethroid chemicals in these streams might

not be transported mainly via rain generated runoff.

Studies indicated that spray drift could be another

important pathway for pesticides entering into surface

water (Cryer et al. 2001). In addition, urban contribution

Fig. 6 Risk rank by stream

density

Environ Geol (2008) 55:1195–1206 1203

123



could also be an important source of pyrethroid runoff

(Oros and Werner 2005; Weston et al. 2005).

Model validation using monitoring data

The five monitoring sites were used as sub-basin outlets to

delineate the watershed. The risk scores of each sub-basin

predicted by the model and the mean detected concentra-

tion of permethrin from the monitoring sites are shown in

the Table 3. The distributions of predicted risk scores and

mean detected concentration numbers were well correlated

with the exception of the OC site (Fig. 8). This was

probably due to the difference between contributing areas

defined during the watershed delineation and the actual

contributing area to that site. The model under predicted

the potential pyrethroid runoff at this sub-basin because the

contributing area delineated by the GIS process was

smaller than the actual contributing area. For the other

sites, risk score were highly correlated with the monitoring

site values as can be seen from the Pearson’s correlation

value of 0.862. The validation process was greatly limited

by the amount of monitoring data available for the current

condition. As more water and sediment monitoring data of

pyrethroid pesticides become available, the model valida-

tion process could be improved in the future.

The prediction precision of the model could be further

improved if in-season pyrethroid runoff generated by

irrigation and runoff from urban land were included.

According to California’s Pesticide Use Reporting data-

base, urban uses of pyrethroids are increasing. Therefore,

pyrethroid runoff from urban areas is another potential

source of pyrethroid chemicals found in sediment and

water. Pyrethroid runoff from urban areas could potentially

account for detections of pyrethroid chemicals in many

important waterways, especially those areas with high

potential runoff. Irrigation induced runoff during the

growing season could be another important contributor of

pyrethroid runoff. A recent report by the San Francisco

Estuary Institute suggested that the highest pyrethroid

concentration in surface water and sediment appeared in

late summer, when irrigation could be a significant

Fig. 7 Values of the risk

score and monitoring sites with

their corresponding sub-basins

Table 3 Maximum detected concentration of pyrethroid chemicals in

monitoring sites and predicted risk scores of their contributing basins

Site namea Basin ID Detected permethrin

concentration (ng/g)

Risk score

DP 7 5.6 22

JN 5 3.8 17

IC 2 10.5 49

AD11 10 1.4 39

OC 13 5.7 7

RC 34 87.7 87

a Site names were from Don Weston’s paper. Please refer to Weston

et al. 2004 for detailed descriptions of each site
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contributing factor (Oros and Werner 2005). The second

step of the project; therefore, focus on quantifying irriga-

tion and urban runoff.

A review paper by Hapeman et al. (2003) from the US

Department of Agriculture evaluated recent studies on

understanding agrochemical fate and transport. They

pointed out that the new challenge for agricultural research

is to identify the vulnerable areas and the temporal and

spatial variations prior to use of chemical by predicting

how it will behave in environmental matrices within a

watershed. The finding of this study fill this data gap by

spatially assessing the relative potential of pyrethroid

runoff and identifying hotspots for future policy to target.

This paper also fills the gap in literature on site vulnera-

bility assessment for pesticide contamination in surface

water. Once the second step is completed, the methods

could be applied to assess the potential risk of other pes-

ticides. The model will greatly assist in prioritizing sites for

water quality monitoring and future implementation of

management practices to reduce runoff. In addition, the

model will be able to act as a template for use in other

areas, serving as a tool to assist decision-making in

watershed management over a wide geographic range.

Conclusion

Important factors affecting pyrethroid runoff include

pesticide use amount, rainfall, number of rainy days,

number of storm events, soil hydrological group, soil

surface layer depth, soil erodibility, surface land cover,

and stream density. The modeling results from this study

further confirmed that these selected factors can explain a

high proportion of pyrethroid runoff potential. Areas with

high runoff potentials include the Stanislaus River Sub-

basin, Newman Gustine Sub-basin, South Merced Sub-

basin, South Madera Sub-basin, Dos Palos Sub-basins and

the Chowchilla Sub-basin. These areas thus need more

attention when pyrethroid pesticides are applied and

should be the priority locations for water quality moni-

toring and BMP implementation. The model developed

during the study showed good prediction precision with

statistically significant correlation to actual pyrethroid

detection. The Pearson’s correlation value of 0.867 indi-

cates that GIS modeling was capable of predicting the

relative risk of pyrethroid off-site movement at sub-basin

scale.
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